20 research outputs found

    Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Full text link
    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.Comment: 16 pages, 17 figures, Preprint submitted to Elsevie

    Fuzzy knowledge-based recognition of internal structures of the head

    Get PDF
    Nous proposons une méthode basée sur la connaissance a priori pour la segmentation et la reconnaissance des formes des structures internes du cerveau en IRM. Les connaissances sur les formes des structures et les distances entre elles, provenant de l'atlas de Talairach, sont modélisées par un champ flou en utilisant une analogie avec la distribution du potentiel d'électrostatique. Une sur-segmentation est d'abord effectuée sur le cerveau pour obtenir des régions homogÚnes. La reconnaissance des structures est ensuite obtenue par la classification des régions utilisant un algorithme génétique, suivie par un affinement au niveau du pixel. Les connaissances floues modélisées sont utilisées dans ces deux étapes. La performance de la méthode proposée est validée par référence aux résultats manuels en utilisant 4 indices de quantification

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Beam Profile Measurements Utilizing an Amplitude Modulated Pulsed Fiber Laser at PIP2IT

    No full text
    International audienceFermilab is undertaking the development of a new 800 MeV superconducting RF linac to replace its present normal conducting 400 MeV linac. The PIP-II linac consists of a warm front-end generating 2 mA of 2.1 MeV H⁻ followed immediately by a series of superconducting RF cryomodules to 800 MeV. To limit the potential damage to the superconducting RF cavities, PIP-II will utilize laser-based monitors to obtain beam profiles via photoionization. This paper will present the results of transverse and longitudinal beam profile measurements using a prototype profile monitor that was tested with 2.1 MeV H⁻ beam at the PIP-II Injector Test (PIP2IT) accelerator. This prototype profile monitor utilizes a high repetition rate fiber laser and fiber optic transport into the PIP2IT enclosure. In addition, results will be shown of narrow-band electron detection from amplitude modulated laser pulses

    Higher-Order-Mode Effects in Tesla-Type Superconducting RF Cavities on Electron Beam Quality

    No full text
    International audienceWe report the direct observations of the correlation of higher order modes (HOMs) generated by off-axis electron beam steering in TESLA-type SCRF cavities and sub-macropulse beam centroid shifts (with the concomitant effect on averaged beam size and emittance). The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a PC rf gun injecting beam into two separated 9-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. The ~100-kHz oscillations with up to 300-ÎŒm amplitudes at downstream locations were observed in a 3-MHz micropulse repetition rate beam with charges of 500 and 1000 pC/b, although the effects were much reduced at 100 pC/b. The studies were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch data, and imaging cameras viewing multi-slit images for emittance assessments at 33 MeV. Initial calculations reproduced a key feature of the phenomena. In principle, these results may be scaled to cryomodule configurations of major accelerator facilities

    The development programme of cathodes and electron guns for the hollow electron lenses of the High Luminosity LHC project

    No full text
    The High Luminosity LHC project (HL-LHC) foresees the construction and installation of important new equipment to increase the performance of the LHC machine. The Hollow Electron Lens (HEL) is a promising system to control the beam halo. It improves the beam collimation system of the HL-LHC and mitigates possible equipment damage in case of failure scenarios from halo losses. The halo can store up to 30 MJ energy. The specifications for this new device are quite demanding. The source, an electron gun with an annular shaped cathode, has to deliver a current up to 5 A. This is five times higher than the current in the existing electron lenses in Fermi and Brookhaven national laboratories. This note describes the programme carried out to design and test high-perveance guns equipped with two types of high-performance scandate cathodes. The size of the final gun is now considerably smaller than the one of the first prototype, allowing a reduction of diameter and cost of the superconducting magnet system used to steer the electron beam. The tests carried out at FNAL, BVERI and BJUT demonstrated that the developed cathodes fulfil the specifications and can supply a 5 A fully Space Charge Limited (SCL) current

    FAST-GREENS: A High Efficiency Free Electron Laser Driven by Superconducting RF Accelerator

    No full text
    International audienceIn this paper we’ll describe the FAST-GREENS experimental program where a 4 m-long strongly tapered helical undulator with a seeded prebuncher is used in the high gain TESSA regime to convert a significant fraction (up to 10 %) of energy from the 240 MeV electron beam from the FAST linac to coherent 515 nm radiation. We’ll also discuss the longer term plans for the setup where by embedding the undulator in an optical cavity matched with the high repetition rate from the superconducting accelerator (3,9 MHz), a very high average power laser source can be obtained. Eventually, the laser pulses can be redirected onto the relativistic electrons to generate by inverse compton scattering a very high flux of circularly polarized gamma rays for polarized positron production

    FAST-GREENS: A High Efficiency Free Electron Laser Driven by Superconducting RF Accelerator

    No full text
    International audienceIn this paper we’ll describe the FAST-GREENS experimental program where a 4 m-long strongly tapered helical undulator with a seeded prebuncher is used in the high gain TESSA regime to convert a significant fraction (up to 10 %) of energy from the 240 MeV electron beam from the FAST linac to coherent 515 nm radiation. We’ll also discuss the longer term plans for the setup where by embedding the undulator in an optical cavity matched with the high repetition rate from the superconducting accelerator (3,9 MHz), a very high average power laser source can be obtained. Eventually, the laser pulses can be redirected onto the relativistic electrons to generate by inverse compton scattering a very high flux of circularly polarized gamma rays for polarized positron production
    corecore